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Real atomic systems, like the hydrogen atom in a magnetic field or the helium atom, whose classical
dynamics are chaotic, generally present both discrete and continuous symmetries. In this paper, we explain how
these properties must be taken into account in order to obtain the proper �i.e., symmetry projected� � expansion
of semiclassical expressions like the Gutzwiller trace formula. In the case of the hydrogen atom in a magnetic
field, we shed light on the excellent agreement between present theory and exact quantum results.
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In the studies of the quantum properties of systems whose
classical counterparts depict chaotic behavior, semiclassical
formulas are essential links between the two worlds, empha-
sized by Gutzwiller’s work �1�. More specifically, starting
from Feynman’s path formulation of quantum mechanics, he
has been able to express the quantum density of states as a
sum over all �isolated� periodic orbits of the classical dynam-
ics. This formula, and extensions of it, have been widely
used to understand and obtain properties of the energy levels
of many classically chaotic systems, among which is the hy-
drogen atom in a magnetic field �2,3�, the helium atom
�4–6�, or billiards �7–10�.

At the same time, because the trace formula �and its varia-
tions� as derived by Gutzwiller only contained the leading
term of the asymptotic expansion of the quantum level den-
sity, the systematic expansion of the semiclassical propagator
in powers of � has been the purpose of several studies
�9–12�, but which focused on billiards, for which both clas-
sical and quantum properties are easier to calculate.

In a recent paper �13�, general equations for efficient com-
putation of � corrections in semiclassical formulas for a cha-
otic system with smooth dynamics were presented, together
with explicit calculations for the hydrogen atom in a mag-
netic field. However, only the two-dimensional case was
considered, because for the three-dimensional �3D� case, dis-
crete symmetries and centrifugal terms had to be taken into
account. Actually, this situation occurs in almost all real
atomic systems depicting a chaotic behavior �molecules, two
electron atoms…�, for which experimental data involve lev-
els having well defined parity, total angular momentum, and,
if relevant, exchange between particles. In particular, semi-
classical estimations of experimental signals like photoion-
ization cross sections are calculated with closed orbits with
vanishing total angular momentum, whereas they usually in-
volve P �L=1� quantum states, whose positions in energy are
shifted with respect to S �L=0� states. Furthermore, in recent
years, the development of the harmonic inversion method
makes it possible to extract the relevant quantities �position
of peaks, complex amplitudes� from both theoretical and ex-
perimental data with a much higher accuracy than with the
conventional Fourier transform �14�. In particular, it becomes
possible to measure the deviation of the exact quantum re-

sults from the semiclassical leading order predictions. Thus a
detailed semiclassical analysis of experimental results, be-
yond the leading order in �, requires the understanding and
the calculation of corrections due to both the discrete sym-
metries and centrifugal terms. In addition, we would like to
stress that even if the present analysis is made with the den-
sity of states, it can also be made with the quantum Green
function, which leads to expressions and numerical compu-
tations of the first order � corrections for physical quantities
like the photoionization cross section �15,16�, which could
either be compared to available experimental data �17,18�, or
become a starting point for refined experimental tests of the
quantum-classical correspondence in the chaotic regime.

� corrections and discrete symmetries have already been
discussed, but only for billiards �9,10,12�, whereas in the
case of systems with smooth dynamics a detailed study is
still lacking. Also, centrifugal terms and/or rotational sym-
metries have been considered by many authors, but either in
the case of integrable systems �19,20�, or for values of the
angular momentum comparable to the action of classical or-
bits �1,21,22�. From this point of view, the present study,
which focuses on fixed values of the quantum angular mo-
mentum and the effect of the centrifugal terms on � correc-
tions for systems with smooth chaotic dynamics, goes be-
yond the preceding considerations. More precisely, in this
paper, we explain how to take into account both discrete
symmetries and centrifugal terms in order to obtain a full
semiclassical description of the first order � corrections for
the 3D hydrogen atom in a magnetic field.

At first, in the case of a chaotic system, whose Hamil-
tonian H=p2 /2+V�q� is invariant under a group S of dis-
crete transformations �, the leading order of semiclassical
approximation for the trace of the Green function G�E�
=1/ �E−H�, restricted to the mth irreducible representation is
given by �23�
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where the l sum is taken over all primitive �isolated� orbits
which become periodic through the symmetry operation �l*Electronic address: Benoit.Gremaud@spectro.jussieu.fr
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�i.e., final position �respectively, velocity� is mapped back to
initial position �respectively, velocity� by �l�. �m��l

n� is the
character of �l

n in the mth irreducible representation of di-
mension dm. Sl is the action of the orbit l , �l is the Maslov
index, Tl is the “period,” Al

n represents the Poincaré surface-
of-section map linearized around the orbit, and Kl is the sub-
group of S leaving each point of the orbit l invariant. Adding
first order � corrections, the preceding equation �1� becomes

gm
sc�E� =

dm
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�
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tr � . �3�

Cl,n
tr can be derived by a detailed analysis of the stationary

phase approximations starting from the Feynman path inte-
gral, following the same steps as in Refs. �10,13� and reads
as follows:

Cl,n
tr = Cl,n

T→E +
1

nTl
	

0

nTl

dt0Cl,n�t0� , �4�

where Cl,n
T→E arises from the time to energy domain transfor-

mation. Cl,n�t0� �see Ref. �13� for the expressions� involves
the classical Green functions Gl,n�t , t��, i.e., the solutions of
the equations controlling the linear stability around the clas-
sical trajectory ql,n

cl �t�:


−
d2

dt21 −
�2V

�q � q
�ql,n

cl �t���Gl,n�t,t�� = 1 ��t − t�� . �5�

The fact that the orbits are periodic after the symmetry trans-
formation �l

n determines the boundary conditions that the
classical Green functions Gl,n�t , t�� must fulfill, namely,

��l
−nGl,n�nTl,t�� = Gl,n�0,t��

Pt0
Gl,n�0,t�� = 0 ∀ t� � �0,nTl� ,

Qt0
�l

−nĠl,n�nTl,t�� = Qt0
Ġl,n�0,t��


�6�

where Pt0
is the projector along the “periodic” orbit at the

position depicted by time t0 and Qt0
=1−Pt0

. Of course, for
�l=1, one recovers the boundary conditions given in Ref.
�13�. Finally, all technical steps of Ref. �13� leading to effi-
cient computation of Gl,n�t , t�� and � corrections, that is, so-
lutions of sets of first order differential equations, can easily
be adapted to take into account these modified boundary con-
ditions.

As a numerical example, we have considered the 2D hy-
drogen atom in a magnetic field, at scaled energy �=−0.1 �2�.
More precisely, we have computed the trace of the quantum
Green function, using roughly 8000 states belonging to the
EEE representation �24� of the group D4, corresponding to
effective 1/� values ranging from 0 to 124 �see Ref. �13� for
further details�. In that case, the periodic orbit 1234 �25,26�
�see inset of the top of Fig. 1 for the trajectory in semipara-
bolic coordinates�, being �globally� invariant under a rotation
of angle � /2, gives rise to contributions in the semiclassical
approximation of the trace at all multiples of S1234/4. In the
same way, the periodic orbit 1243 �see middle inset of Fig. 1�
being invariant under a rotation of angle �, contributions are

present at all multiples of S1243/2. For both these orbits,
Table I displays the comparison of the present theoretical
calculation and the numerical coefficient Cl,n

HI, extracted from
the exact quantum Green function, using harmonic inversion
�13,14�. As one can notice, the agreement is excellent for the
amplitudes and rather good for the phases, which is the usual
behavior of harmonic inversion. Furthermore, the same
agreement has also been found for the other representations,
thus emphasizing the present approach for the calculation of
the first order � corrections when taking into account discrete
symmetries.

Contrary to the preceding, calculating first order � correc-
tions due to centrifugal terms is more complicated and is best
explained in the case of the 3D hydrogen atom in a magnetic

FIG. 1. �Color online � First order � correction to the semiclas-
sical approximation of the trace of the quantum Green function for
the hydrogen atom in a magnetic field for different values of the
magnetic number M , M =1/2 corresponding to the 2D case �13�.
Crosses depict the values extracted from the exact quantum func-
tion using harmonic inversion, whereas the solid line corresponds to
the classical results given by Eq. �10�. For the three different peri-
odic orbits, whose trajectories in the �u ,v� plane are plotted �the
nucleus being depicted by the black dot�, the agreement is excellent,
thus emphasizing the validity of Eqs. �9� and �10�.

TABLE I. Numerical comparison between the theoretical � cor-
rections Cl

tr for the trace of the quantum Green function, restricted to
the EEE representation, of the 2D hydrogen atom in a magnetic
field and the numerical coefficients Cl

HI extracted from exact quan-
tum function using harmonic inversion. The agreement is excellent
for the amplitudes and rather good on the phases, thus emphasizing
the validity of the present approach.

Code Cl
tr �Cl

HI� Rel. error arg Cl
HI

1
41234 −0.094 430 0.09445 �2	10−4 0.9996	�
1
21234 −0.361 689 0.3611 �2	10−3 0.996	�
3
41234 −0.400 555 0.3992 �3	10−3 1.005	�
1
21243 0.049 399 0.0493 �8	10−4 −0.075	�
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field. The regularized Hamiltonian in semiparabolic coordi-
nates, for fixed value M of the projection of the angular
momentum along the field axis, is given by �2�

H = −
�2

2
� �2

�u2 +
�2

�v2 + 
1

4
− �M�2�� 1

u2 +
1

v2��
− ��u2 + v2� +

1

8
u2v2�u2 + v2�

= H0 +
�2

2

�M�2 −

1

4
�U�u,v� . �7�

H0 is then the Hamiltonian of the 2D hydrogen atom in a
magnetic field. If U�u ,v� was regular, then the additional
first order � correction for the orbit l would simply be

−
1

2

�M�2 −

1

4
�	

0

Tl

dt U„ul�t�,vl�t�… . �8�

One must mention that in this case, the Langer transforma-
tion �27� of the coordinates �u ,v�→ (exp�−x� , exp�−y�) gives
rise to a Hamiltonian which does not separate into kinetic
and potential energies and for which no expressions for �
corrections are available.

On the other hand, the fact that U�u ,v� is singular im-
poses boundary conditions on both classical and quantum
dynamics. The classical trajectories have to make �smooth�
bounces near u=0 and v=0 and for vanishing values of �,
we expect the trajectories of H to be those of H0, but mapped
onto the reduced phase space �u
0,v
0�, i.e., making hard
bounces on the �u ,v� axis. From the quantum point of view,
depending on the parity of M, only wave functions belonging
to given representations of D4 are allowed. Thus first order �
corrections due to the singular part of the potential U, are
given by the preceding considerations on the symmetries,
whereas remaining corrections are given by Eq. �8�, where U
has to be replaced by a smooth counterpart, namely,

Ũ = lim
�→0+

1

2

 1

�u + i��2 +
1

�u − i��2 +
1

�v + i��2 +
1

�v − i��2� .

�9�

Actually, one can show that the preceding equation gives the
right answers for � expansion of the propagator of the free
particle �up to �3� and the harmonic oscillator �up to �2�, for
which analytical expressions for classical trajectories, classi-
cal Green functions, and quantum propagators exist �higher
orders have not been checked yet�. However, even if a de-
tailed analysis of the derivation of the trace formula in pres-
ence of centrifugal terms seems to show that the preceding

approach works in general cases, rigorous proof of Eq. �9� is
lacking.

Nevertheless, in the case of the 3D hydrogen atom in a
magnetic field, we have compared the first order � correc-
tions, for different periodic orbits and for different values of
the magnetic number M, with the present prediction, namely,

Cl
tr�M� = Cl

tr�2D� −
1

8
�4�M�2 − 1�	

0

Tl

dtŨ„ul�t�,vl�t�… .

�10�

The results are displayed in Fig. 1 for M =0,1,2 and for three
different orbits, namely 1234, 1243, and 12343, whose tra-
jectories in the �u ,v� plane are plotted. The solid line is the
theoretical result given by Eq. �10�, whereas the crosses are
the values extracted from the trace of the exact quantum
Green function, using harmonic inversion �for scaled energy
�=−0.1, roughly 8000 effective 1/� values ranging from 0 to
124�. As one can notice the agreement is excellent, thus giv-
ing strong support for the validity of Eqs. �9� and �10�. Fur-

thermore, the simplicity of the replacement Ũ may serve as a
guideline for a rigorous treatment of the � corrections arising
from the centrifugal terms. In particular, the calculation of
higher orders involves products of the derivatives of these
centrifugal terms and those of the potential V0, giving rise to
nontrivial mixing between centrifugal and standard � correc-
tions.

In conclusion, we have presented a semiclassical analysis,
beyond the usual Gutzwiller approximation, including first
order � corrections, of the quantum properties of real chaotic
systems. More specifically, we have explained the additional
corrections arising when taking into account both discrete
symmetries and centrifugal terms. In the case of the �3D�
hydrogen in a magnetic field, the agreement between the
theory and the numerical data extracted from exact quantum
results is excellent, emphasizing the validity of the analysis,
especially of Eqs. �9� and �10�.

Finally, since we know how to compute the � corrections,
it would be very interesting to work the other way around,
that is, to perform the semiclassical quantization, thus getting
� corrections in the semiclassical estimations of the quantum
quantities, like the eigenenergies. Of course, this represents a
more considerable amount of work, since the Cl,n

tr coefficients
must be computed for all relevant orbits and then included in
standard semiclassical quantization schemes, like the cycle
expansion �5,11,28�.
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